Spatial estimation: a non-Bayesian alternative
نویسندگان
چکیده
منابع مشابه
SHORT REPORT Spatial estimation: a non-Bayesian alternative
A large collection of estimation phenomena (e.g. biases arising when adults or children estimate remembered locations of objects in bounded spaces; Huttenlocher, Newcombe & Sandberg, 1994) are commonly explained in terms of complex Bayesian models. We provide evidence that some of these phenomena may be modeled instead by a simpler non-Bayesian alternative. Undergraduates and 9to 10-year-olds c...
متن کاملNon-Bayesian Estimation and Prediction under Weibull Interval Censored Data
In this paper, a one-sample point predictor of the random variable X is studied. X is the occurrence of an event in any successive visits $L_i$ and $R_i$ :i=1,2…,n (interval censoring). Our proposed method is based on finding the expected value of the conditional distribution of X given $L_i$ and $R_i$ (i=1,2…,n). To make the desired prediction, our approach is on the basis of approximating the...
متن کاملBayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model
Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...
متن کاملBayesian Wavelet Regression for Spatial Estimation
We consider the problem of estimating the properties of an oil reservoir, like porosity and sand thickness, in an exploration scenario where only a few wells have been drilled. We use gamma ray records measured directly from the wells as well as seismic traces recorded around the wells. To model the association between the soil properties and the signals, we fit a linear regression model. Addit...
متن کاملBayesian estimation of recent migration rates after a spatial expansion.
Approximate Bayesian computation (ABC) is a highly flexible technique that allows the estimation of parameters under demographic models that are too complex to be handled by full-likelihood methods. We assess the utility of this method to estimate the parameters of range expansion in a two-dimensional stepping-stone model, using samples from either a single deme or multiple demes. A minor modif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Developmental Science
سال: 2014
ISSN: 1363-755X
DOI: 10.1111/desc.12264